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SUMMARY

Novel three-dimensional unstructured grid higher order convection schemes are presented. The schemes
are coupled with locally conservative flux continuous control-volume distributed (CVD) finite-volume
schemes for the porous medium general tensor pressure equation on structured and unstructured grids
in 3-D.

The schemes are developed for multi-phase flow in porous media. Benefits of the schemes in terms
of improved front resolution and medium discontinuity resolution are demonstrated. Comparisons with
current methods including the control-volume finite element method highlight the advantages of the new
formulation for three-dimensional reservoir simulation. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The focus of this paper is on the development of three-dimensional higher order convection schemes
coupled with optimal discrete continuous Darcy fluxes for approximation of the multi-phase flow
equations that arise in reservoir simulation. The system of equations considered here is hyperbolic
fluid transport coupled with an elliptic system for pressure and Darcy velocity [1], see also
Reference [2].

A novel higher order scheme with maximum principle for unstructured grids in three dimensions
is presented. The higher order convection schemes presented here extend the two-dimensional
hyperbolic schemes presented in Reference [3] to 3-D. Higher order convection schemes for
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reservoir simulation have been developed over a number of years, e.g. References [3–11]. These
schemes achieve higher order accuracy and are constructed such that the solution remains free of
spurious oscillations. These methods yield benefits in terms of improved front resolution and have
been successfully demonstrated for a variety of multi-phase flow problems in subsurface reservoir
simulation.

The continuous Darcy flux schemes presented here are a three-dimensional generalization of the
two-dimensional elliptic schemes presented in Reference [3]. Previous work in the area of locally
conservative flux-continuous full-tensor finite-volume schemes includes References [12–26]. The
schemes presented here are control-volume distributed (CVD) where flow variables and rock
properties are associated with the control-volumes of the grid and provide a consistent discretization
of the porous medium pressure equation applicable to general geometry and permeability tensors
on structured and unstructured grids e.g. Reference [12]. Mixed finite element methods (MFEM)
e.g. References [7, 27–31] preserve flux continuity for full tensor flows, however mixed methods
solve for velocity components and pressure in a globally coupled system. For a three-dimensional
structured grid MFEM involve solving for four times as many degrees of freedom as (the more
efficient) CVD methods. The CVD schemes presented here maintain flux continuity with one
discrete pressure value per control-volume.

Coupling of the novel higher order phase component approximations with the general tensor
flux-continuous formalism is a new development for general grids in three dimensions. Here
general is used in the sense of allowing the grid to be composed of any element type, arbitrary
distortions of such grids and their effects remain to be investigated. The new formulation yields an
improved scheme for reservoir simulation applicable to multi-phase flow while using an optimal
number of degrees of freedom within the discretization.

Flow equations are presented in Section 2. A brief summary of the three-dimensional flux
continuous formulation is presented in Section 3. Extension of the higher order schemes to general
unstructured grids is presented in Section 4. Two-phase flow results are presented in Section 5
that demonstrate the advantages of the new higher order flux-continuous formulation in terms of
grid orientation and front resolution. Comparisons with the standard control-volume finite element
CVFE scheme [32], (exactly the same number of degrees of freedom), demonstrate advantages
of the new formulation with respect to medium discontinuity resolution for reservoir simulation.
Conclusions are presented in Section 6.

2. FLOW EQUATIONS

The flow equations are briefly described here, the reader is referred to Reference [1] for a com-
prehensive account. The schemes presented here are illustrated with respect to two phase incom-
pressible flow models, where without loss of generality unit porosity is assumed and capillary
pressure and dispersion are neglected. The integral form of the flow equations is given over
a control-volume �cv with surface ��cv, the continuity equations for phases p= 1, Np are written
as ∫

�cv

(
�Sp
�t

+ ∇ •Vp

)
d� =mp (1)

where Sp, Vp and mp are the pth phase saturation, Darcy velocity (defined below) and specified
phase flow rate, respectively, and phase saturations sum to unity.
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The momentum equations are defined through Darcys law where the pth phase velocity is
defined by

Vp = fp(VT − ��(S)gK∇h) (2)

here fp is the fractional flow of phase p, and VT is the total Darcy velocity defined via

VT =−�K(∇� + �̄g∇h) (3)

where � is the total mobility [1], K is a diagonal or full elliptic Cartesian permeability tensor,
� is the pressure and ∇ = �xi .

Also, �̄=∑Np
p=1 �p�p/� is the mean density and �p, �p are the pth phase mobility and density,

respectively, ��(S) = (�p − �̄), h is the height, g the acceleration due to gravity.
The closed surface integral of phase velocity can now be expressed as the sum of outward

normal phase fluxes Fpi over each of the surface increments of the control-volume �cv, viz∮
��cv

Vp • n̂ ds =
NS∑
i=1

Fpi (4)

where NS is the number of surface increments that enclose the volume �cv. The outward normal
phase flux in the i th normal direction is written in terms of the general tensor T as

Fpi =−
∫

��cv

fp�

(
3∑
j=1

Ti j�� j
+ �pg

3∑
j=1

Ti j h� j

)
d�i (5)

where �i are local curvilinear parametric coordinates, �i is the parametric coordinate surface
increment and �� j

is the derivative of � with respect to � j and

T= JJ−1KJ−T (6)

is the general tensor defined via the Piola transformation which is function of the Cartesian
permeability tensor and geometry, where Ji j = �xi/�� j is the Jacobian of the local curvilinear
coordinate transformation. General full tensors can arise (with non-zero cross terms Ti j �= 0 for
i �= j) as a result of the grid type, local orientation of the grid and permeability field and from
upscaling. For incompressible flow Equation (1) is summed over the Np phases and since saturations
sum to unity, using Equations (4) and (5) the pressure equation

NS∑
i=1

FTi = M (7)

is obtained. In order to simplify notation gravity will now be omitted from the formalism, however
once the discrete flux is defined gravity can be included by following the above definitions.
Now using

Fpi =−
∫

��cv

fp�
3∑
j=1

Ti j�� j
d�i (8)
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the total flux is given by

FTi =−
∫

��cv

�
3∑
j=1

Ti j�� j
d�i (9)

and involves a product of total mobility and single phase flux. Note that the single phase flux is
obtained by setting �= 1 in Equation (9). Zero normal flux (Neumann) applies on solid walls,
here M is the total inflow/outflow flux which is zero away from wells. Initial data in terms of
saturation and pressure fields are also prescribed. Further details can be found in Reference [1].

3. FLUX-CONTINUOUS CONTROL-VOLUME DISTRIBUTED (CVD)
APPROXIMATIONS IN 3-D

The initial or primal grid is comprised of cells, with corners defined by the grid vertices. The
distinction between cell centred and cell vertex schemes is discussed in Reference [3]. The schemes
presented here are vertex centred, where for a given control-volume surrounding a grid vertex,
flow variables are assigned to grid vertices and rock properties are piecewise constant with respect
to the control-volumes and are CVD. The physical constraints that must be enforced are continuity
of pressure and continuity of normal flux across interfaces (control-volume faces) that separate
changes in permeability tensor.

3.1. Continuous flux approximation in three dimensions

We now consider approximation of the incompressible single phase flow pressure equation and
present a summary of the flux-continuous formulation in three dimensions. Previous work on flux-
continuous schemes in 3-D is presented in References [15, 20, 23, 25]. The primal grid considered
here can be a hybrid composed of combinations of tetrahedra, prisms, pyramids and hexahedra
elements in 3-D. In principle the only restriction on grid structure is that tetrahedra can only be
joined to hexahedra through a pyramid interface. A polyhedral control-volume is built around
each grid vertex, generating a primal-dual grid. Starting in a primal grid cell, the cell centre is
joined to cell face mid-points, cell face mid-points are joined to cell edge mid-points. As a result
the primal grid cells are decomposed into sub-hexahedra or subcells, four for a tetrahedra, five
for a pyramid, six for a prism and eight for a hexahedra. In each case the number of subcells
corresponds to the number of vertices defining the primal cell, and each subcell belongs to the
control-volume of the unique vertex to which it is attached. Cell vertex control-volumes are defined
by a local assembly or recomposition at each primal grid vertex of all subcells that are attached to
the vertex. The resulting set of polyhedral control-volumes defines a dual grid relative to the primal
grid which we call the primal-dual. Rock permeability and porosity are assumed to be piece-wise
constant over each polyhedral control-volume and flow variables belong to the control-volumes
and are vertex centred. Figures 1 and 2. Therefore, discontinuities in rock properties occur over
the control-volume faces.

As with all finite volume schemes we begin with application of the Gauss divergence theorem
to the integral of divergence, cf. Equation (1) over a given control-volume. A unique discrete flux
is then constructed for each control-volume face and the closed integral of flux is approximated
by the sum of discrete outward normal fluxes. For a given face between two neighbouring control-
volumes, the unique flux is subtracted from the left-hand control-volume and added to the right-hand

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1079–1095
DOI: 10.1002/fld



HIGHER-RESOLUTION HYPERBOLIC–ELLIPTIC FLUX-CONTINUOUS 3-D 1083

1e
3e

4e

2e

5e
6e

3f

4f

1f

1

2

3

4

(a)

1e
4e

5e

1f4f

5f

1

5

(b)

Figure 1. Subcell (dashed line) of the control-volume surrounding primal cell vertex local
number 1, for: (a) tetrahedra; and (b) pyramid.
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Figure 2. Subcell (dashed line) of the control-volume surrounding primal cell vertex local
number 1, for: (a) prism; and (b) hexahedra.

control-volume leading to a locally conservative scheme with respect to the faces of the polyhedral
control volumes that contain the discrete permeability tensors with flow variables defined at
their vertices.

Within the flux build process, fluxes are approximated on control-volume subcell faces inside
each primal grid cell, in analogous steps to 2-D [3]. Flux continuity conditions are discussed in the
next subsection. Each subcell flux is associated with a unique cell edge, the number of (primal-cell)
fluxes constructed inside each primal cell is equal to the number of edges, 12 for a hexahedra,
9 for a prism, 8 for a pyramid and 6 for a tetrahedra.

The subcell fluxes are accumulated with respect to their primal cell edges within an assembly
process. The edge index e(i, j) refers to the j th primal edge attached to vertex i . The net edge-
based single phase flux Fe(i, j)(�) associated with edge e(i, j) is comprised of the sum of adjacent
subcell fluxes that belong to the primal grid cells with common edge e(i, j), with

Fe(i, j)(�) =
NSCE∑
�=1

F�(�) (10)

where NSCE is the number of subcells attached to the edge e(i, j). After assembly of net edge-
based fluxes, the discrete scheme for each vertex i is completed with the closed integral of net
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Gaussian flux approximated by the sum of net edge-based fluxes connected to the i th vertex. For
single phase flow on unstructured grids the assembled finite volume scheme at vertex i can be
written concisely as

NedV∑
j = 1

Fe(i, j)(�) = Mi (11)

where summation is over all NedV edges passing through the i th grid vertex, (Mi denotes a specified
flow rate at vertex i , or is zero otherwise).

3.2. Control-volume flux and continuity

Here a summary of the continuous algebraic flux approximation is given. A consistent normal flux
approximation is constructed such that pressure and normal flux are continuous across control-
volume faces inside a primal grid cell. In order to achieve this (as in 2-D [3]) local interface
pressures are introduced, one per control-volume sub-face, establishing point-wise continuity in
pressure. Subcell tetrahedral basis functions are then formed by joining the cell vertices (with
locally numbered vertex pressures Uv) to the positions of the adjacent interface pressures U f and
three normal fluxes are defined with respect to each subcell (with exception of pyramid summit),
on the three faces of each subcell that are inside the primal grid cell. Flux continuity is then
imposed by equating fluxes on the left- and right-hand sides (L , R) of each of the interfaces in
each primal cell resulting in

Fi =−�(Ti1�� + Ti2�� + Ti3�	)|L� =−�(Ti1�� + Ti2�� + Ti3�	)|R� (12)

for each interface. Here � = 1/n f where n f is the number of subcell faces making one interior
surface that slices through a primal cell, e.g. for a hexahedra n f = 4. The general tensor T of
Equation (6) is approximated locally by resolving full-tensor fluxes with respect to the subcell
geometry and control-volume permeability. The flux continuity equations Equation (12) define a
local system of equations for the interface pressures, where the number of continuity equations
matches the number of interface pressures and is equal to the number of edges of the primal
cell. The discrete pressure field has a piecewise linear variation over each subcell tetrahedra and
consequently approximations of the derivatives ��, �� and �	 are linear functions of U f and Uv .

Here �| j� denotes interface flux � at location � and state of volume j . The actual position of �
on each subcell face defines both the point of continuous pressure and the flux quadrature, and in
turn leads to a family of schemes analogous to Reference [18].

The development of these schemes raises many interesting issues, which are being investigated
in current research. In this paper flux continuity conditions are restricted to tetrahedral and hexa-
hedral cells and the base members of the families of schemes with quadrature q = 1 (defined in
References [12, 18]) are tested. Pyramids (which require special treatment) and prisms are currently
only used in regions where permeability tensors are constant, as in the test cases presented in the
results section. The current pyramid and prism fluxes are built using the correct local cell geometry
and remain consistent and locally conservative with respect to control-volumes provided the perme-
ability tensor is constant throughout these cells. The development of full flux continuity conditions
that allow the permeability tensor to vary inside these cells, i.e. to jump across control-volume
faces inside pyramid and prism cells is beyond the scope of this paper and will be presented in a
future report.
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The algebraic system of fluxes of Equation (12) are rearranged in the form

F= ALU f + BLUv = ARU f + BRUv (13)

and thus the interface pressures can be expressed locally in terms of the cell vertex pressures.
After elimination of the � f from Equation (13) it follows that

F= (AL(AL − AR)−1(BR − BL) + BL)Uv (14)

The fluxes of Equation (14) can be written as a linear combination of cell edge potential
differences [12] and satisfy the consistency condition that the flux is zero for constant potential.

4. HIGHER-ORDER MULTI-PHASE FLOW APPROXIMATIONS

The general finite volume discretization of Equation (1) for multi-phase flow on unstructured grids
takes the form

(Sn+1
pi − Snpi )�i + �t

NedV∑
j=1

fp(S
n+q
L ,Sn+q

R )FTe(i, j) (�
n+1) = �tMpi (15)

for the pth phase continuity equation, where Sn+q
L , Sn+q

R are the left- and right-hand phase satu-
ration vectors with respect to edge e(i, j) and n + q denotes the time level of the scheme. Here
FTe(i, j) =�Fe(i, j)(�) and Mpi denotes the pth phase flow rate, prescribed at wells and is zero
otherwise. The phase continuity equations are coupled through the discrete pressure equation

NedV∑
j=1

�(Sn+q
L ,Sn+q

R )Fe(i, j)(�
n+1) = Mi (16)

The system Equations (15), (16) are solved implicitly with q = 1 in this work. Implicit flux
limiting schemes for reservoir simulation have been presented in Reference [15], where a weighted
Crank-Nicolson scheme is developed [5] for time accuracy. The sequential scheme with q = 0
corresponding to implicit pressure explicit saturation (IMPES), which is far more common for
higher order schemes can also be used. Time accuracy of the methods are under development. A
common approach is the use of the Runge–Kutta method [33] for the explicit time integration of
the convective equations.

The approximate flux is defined according to the sign of the local wave direction wp, evaluated
here at the edge mid-point. Referring to Figure 3,with respect to a local frame of reference aligned
with the direction i to k along the edge vector �rk,i , the standard reservoir simulation upwind
scheme is written as

fp(S
n+q
L , Sn+q

R ) =
⎧⎨
⎩
fp(S

n+q
L ), wp � 0

fp(S
n+q
R ), wp<0

(17)

and the first-order upwind scheme, (known as single-point upstream weighting in the reservoir
simulation literature [1]) is defined with Sn+q

L =Sn+q
i and Sn+q

R =Sn+q
k .
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Figure 3. Higher order support.

4.1. Higher order schemes

A three-dimensional higher order approximation is now introduced with respect to the saturation
variables. From here on it is understood that all saturations are computed at level n+ q depending
on the choice of scheme formulation. The scheme is expressed in two-steps. Higher order left-
and right-hand side states are defined relative to the mid-point of each edge e (along which flux
is to be defined) by expansions about the edge vertices at i and k, Figure 3. As in Reference [3],
the expansions are constrained with slope limiters to ensure that the higher order data satisfies a
local maximum principle, preventing the introduction of spurious extrema.

First we define the difference in S over the edge e Figure 3, as

�Ski =Sk − Si (18)

where it is now understood that �S with a double suffix denotes a difference in S. Referring to
Figure 3 the left and right states SL and SR at the mid-point of the key edge e (joining vertices
i and k) are expressed as

SL =Si + 1
2�

+�Ski (19)

where �+ is a function of

r+
ki = (�Siu/�Ski ) (20)

and

SR =Sk − 1
2�

−�Ski (21)

where �− is a function of

r−
ki = (�Sdk/�Ski ) (22)

The differences �Siu and �Sdk are well defined on a structured grid.
However extension to unstructured grids requires special construction of the differences �Siu

and �Sdk .
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Directional differences are constructed by extrapolating along the key edge defined by vector
�rki in the respective upstream and downstream directions, see arrows in Figure 3. The procedure
is illustrated for tetrahedral cells.

Extrapolation of the respective upstream and downstream data is constrained such that a local
maximum principle holds for a scalar equation. The upstream tetrahedra i, 1, 2, 3 is labelled TU and
the down stream tetrahedra k, 4, 5, 6 is labelled TD. The space vector corresponding to edge e (drki )
is extrapolated into the respective tetrahedra TU, TD, see arrows in Figure 3. This is illustrated
further with respect to vertex i . The edge vector is extrapolated to the point of intersection u, on
the opposite face of the tetrahedra TU, Figure 3. The upwind difference is then obtained via the
expansion

�Siu =∇STU · driu (23)

and for a linear approximation of S over the tetrahedra TU the right-hand side of Equation (23) is
equal to the convex average of tetrahedral edge differences with

�Siu = �1�Si1 + �2�Si2 + �3�Si3 (24)

where �i , i = 1, . . . , 3 are the ratio of volumes of sub-tetrahedra defined in TU with respective base
areas (u, 3, 2), (u, 1, 3), (u, 2, 1), to volume of tetrahedra TU and are therefore positive and sum
to unity. In order to impose a maximum principle with respect to TU and edge e, the limiter �+
is defined by

�+ = �(r+
ki ) (25)

where r+
ki is defined by Equation (32) and �(r) is any classical slope limiter [36, 37]. The higher

order reconstruction is then bounded between Sk and Su . By convexity (Equation (24)) Su =
�1S1 + �2S2 + �3S3, thus bounds are such that

min
TU∪e S�SL�max

TU∪e S (26)

over tetrahedra TU and edge e yielding a local maximum principle with reconstruction reducing to
first order locally at three dimensional extrema. In cases where coincidence or near coincidence
is detected between the extrapolated edge and an upwind tetrahedral face or edge the limiting is
collapsed to be entirely face or edge based. A similar convex average interpolant is constructed
with respect to vertex k using the right hand tetrahedra TD to obtain the difference �Sdk together
with analogous limiter bounds that now depend on the edge slopes �S4k , �S5k and �S6k ensuring
a maximum principle with min S�SR�maxS over TD and edge e.

This scheme is a three-dimensional generalization of the higher order scheme presented in
Reference [3] and is similar in motivation to the local edge diminishing (LED) schemes of
References [34, 35], with a higher order reconstruction applied to the data, (saturation field in this
case). The second step of the scheme uses the upwind flux where each higher order approximation
of phase saturation is upwinded via the flux using Equations (19), (21) in Equation (17). The
van-Leer (Fromm) limiter [36]

�(r) =max

(
0,min

(
2r, 2,

(1 + r)

2

))
(27)
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is used to define �(r) in Equation (25), other possible limiters are presented in Reference [37, 38].
Note as before, that the first-order flux is recovered locally if the limiters are set to zero.

5. RESULTS

The test cases involve two phase flow (oil–water) initial oil saturation is prescribed and water is
injected. Water saturation contours are shown in each case. Solid wall (zero normal flow) boundary
conditions are applied on all exterior boundaries of each reservoir domain. The grids employed
here are fairly smooth although major changes in grid type occur. In all cases flow rate is specified
at the (inflow) injector and pressure is prescribed at the (outflow) producer.

5.1. Case 1

This case involves a three-dimensional grid orientation study, using a prismatic grid Figure 4. The
tensor is assumed to be diagonal isotropic. Injection and production wells are located half way
along diagonally opposite edges of the hexahedral domain, Figure 4. Water saturation contours are
shown at 0.95 PV injected, view from the injector in Figure 5 and view from producer in Figure 6.
The result obtained with a consistent Darcy flux approximation and first-order convective flux is
shown in Figures 5(a) and 6(a), respectively. The contours indicate a non-symmetric profile, both
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Figure 4. Prismatic grid and boundary conditions.
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Figure 5. 3D water saturation contours—prism grid orientation test:
(a) CVD first order; and (b) CVD higher order.
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Figure 6. 3D water saturation contours—prism grid orientation test:
(a) CVD first order; and (b) CVD higher order.

on the domain face adjacent to the edge on which the injector is placed and on the upper surface
where contours are seen to be non-symmetric about the centre line towards the producer. This
result shows a fully three-dimensional grid orientation effect is induced by the prismatic cells when
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using a first-order upwind scheme. The result obtained with a consistent Darcy flux approximation
and higher order convective flux is shown in Figures 5(b), and 6(b), respectively. The higher order
scheme provides considerable improvement in resolution of the Buckley Leverett shock front
and yields an almost symmetric profile demonstrating the need for both a consistent Darcy flux
approximation and higher order convective flux on unstructured grids in three dimensions.

5.2. Case 2

The following example illustrates a fundamental difference in behaviour between the above CVD
formulation and CVFE [32]. In contrast to the CVD schemes where flow variables and rock
properties are assigned to the control-volumes, the CVFE formulation assigns flow variables to
the vertices and rock properties to the cells or elements. The CVFE formulation is not flux
continuous in general and it is well known that this type of approximation can cause spreading of
information when rapid changes in rock properties occur e.g. References [3, 39, 40]. This example
shows that while higher order fluid transport approximations can improve a low-order result, the
higher order schemes do not compensate for the loss of information inherent in the CVFE Darcy
flux.

The test case involves three-dimensional flow in a domain comprised of a mixed hybrid grid
of hexahedral cells and tetrahedral cells joined by an interface comprised of a layer of pyramid
cells. The domain and boundary conditions (injector lower right-hand corner and producer upper
left-hand corner) are indicated in Figures 7 (CVFE grid) and 8 (CVD grid). The domain is assigned
a high permeability field and is divided by a low permeability layer with drop by six orders of
magnitude in permeability. The layer is in the (y–z) plane at x = 95, with an aperture (position

I

P

Figure 7. Hybrid Hex-Tet and pyramid layer grid with low-perm barrier and aperture CVFE grid.

I

P

Figure 8. Hybrid Hex-Tet and pyramid layer grid with low-perm barrier and aperture CVD grid.
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Figure 9. 3D water saturation contours—hybrid Hex-Tet and pyramid layer CVFE first order.

1450

1500

Z

0

50

100

150

200

X

0

25

50

75

100

125

Y

Figure 10. 3D water saturation contours—hybrid Hex-Tet and pyramid layer CVFE higher order.

indicated by arrows) approximately in the centre of the layer of one control-volume in size,
Figures 7 and 8.

The low and higher order CVD schemes are compared with the low and higher order CVFE
schemes for this case at 0.75 PV injected. The CVFE and CVD grids are shown in Figures 7 and 8.
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Figure 11. 3D water saturation contours—hybrid Hex-Tet and pyramid layer CVD first order.
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Figure 12. 3D water saturation contours—hybrid Hex-Tet and pyramid layer CVD higher order.
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As in two dimensions [3], the grids are chosen so as to approximately maintain the same problem
and permeability variation with respect to the scheme formulations. Permeability is assigned to
the control-volumes of the CVD grid. The CVFE grid is given an extra layer of cells across the
domain so that the aperture is comparable with that of the CVD grid and permeability is defined
cell-wise over the CVFE grid.

First order and higher order CVFE results are shown in Figures 9 and 10, respectively. The
respective CVD results are shown in Figures 11 and 12. The first-order CVFE scheme result
shows strong flow through the low permeability barrier, which should remain essentially no-flow
in the region away from the aperture, Figure 9. In sharp contrast, the resolution of the flow in the
neighbourhood of the low permeability barrier is evident in the case of the first order CVD scheme
Figure 11, with the flux continuous CVD scheme providing much clearer resolution of flow and
trapped oil near the low permeability barrier.

While the higher order CVFE scheme Figure 10 yields a sharper shock front than the first-order
CVFE scheme Figure 9, the higher order scheme cannot compensate for the basically incorrect
trend in flow behaviour predicted by the CVFE scheme. The averaging effect that is inherent in
the CVFE Darcy flux approximation still induces significant flow through the low permeability
barrier despite the use of a higher order convective flux. Consequently, while the shock front is
sharper the flow field is quite different to that of the CVD scheme.

The higher order CVD scheme Figure 12 provides further improvement in resolution of
the flow field compared to the first-order CVD scheme Figure 11. The low permeability bar-
rier is clearly detected by the higher order CVD scheme and resolution of the front is also
improved throughout the unstructured grid domain. The difference between higher order CVD
(Figure 12) and higher order CVFE (Figure 10) serves to again highlight the benefits of the
CVD formulation which uses the same number of degrees of freedom for flow variable
approximation.

6. CONCLUSIONS

A novel higher order convective flux approximation is presented for unstructured grids in three
dimensions. The resulting higher order convective flux approximations are coupled with consistent
and efficient continuous Darcy flux approximations. The coupling leads to new schemes for
reservoir simulation on quite general structured and unstructured grids that can be comprised of
tetrahedra, pyramids, prisms and hexahedra.

Benefits of the new higher order CVD schemes are demonstrated by comparisons with current
methods in reservoir simulation and with the standard control-volume finite element CVFE scheme
which uses the same number of degrees of freedom as the new schemes.

Results are presented for two phase flow in three dimensions which clearly show that the higher
order schemes improve front resolution and significantly reduce unstructured grid orientation
effects.

The CVFE scheme tends to average flow effects in the presence of rapid changes in permeability
on grids of finite level. While the higher order CVFE scheme improves front resolution compared
to first order CVFE, the higher order CVFE scheme cannot compensate for loss of crucial Darcy
flux information that occurs as a consequence of the CVFE formulation, consistent with earlier
findings in 2-D.
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In addition to improved front resolution the higher order CVD scheme is shown to significantly
improve flow resolution in the presence of medium discontinuities in three-dimensional problems.
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